1 (a) (reserves last longer for walking / ora;
(approx) 4 times longer / other use of figures ;
(ii) glucose and muscle glycogen ;
(iii) fat and carbohydrate;
(iv) award two marks if correct answer (16.6 / 17) is given if no answer or incorrect answer award one mark for correct working

1660 / 100 OR 5800 / 350 OR average of the two 16.57 / 16.58 / 16.59 / 16.6 / 17 (kJ per gram) ;; \mathbf{R} rounding down to 16.5
(b) (muscle, growth / development / repair ; A 'make / build up, muscle’
(ii) to build up, energy / glycogen, reserves / stores ; muscle / liver, glycogen ;
converted to fat / stored as fat ;
(c) $\quad\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow 2 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}\right.$ (+ energy released)

1 mark for glucose + lactic acid formulae correct ;
1 mark for balanced equation ; \mathbf{R} if anything else given $\left(\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}\right)$
(ii) 1 short, time / distance, for sprint or long, time / distance, for marathon ;

2 sprint needs (lots of) energy quickly / marathon needs energy over long period;
3 sprint oxygen supply not sufficient / oxygen supplied during marathon ;
4 anaerobic does not need oxygen / aerobic needs oxygen ;
5 lactic acid, removed after sprint / would build up in marathon ;
6 ref to muscle, fatigue / cramp / pain ;
7 ref to oxygen debt;
8 AVP ; e.g. fat has higher energy content useful for marathon [max 4]
(iii) glycogen in liver broken down to glucose ;
correct ref to glucagon ; \mathbf{R} if 'glucagon breaks down glycogen...
glucose from liver enters the blood ; R 'excreted into blood'
idea that balances use of glucose ; A 'replaces glucose used up'
[Total: 17]

2 (a balanced diet
provides, sufficient energy / energy for needs ;
provides, molecules / materials, for metabolism / equivalent ; A substances
provides, nutrients / named nutrients ; CPFVM $\mathrm{H}_{2} \mathrm{O}$ fibre
A minimum of any three named nutrients
A contains (all the) food, groups / types / classes R 'substances’
in correct / right, quantities / proportions / amounts ;
A adequate / sufficient R 'equal'
\mathbf{R} 'balanced' as it is in the question
(b) (i) liver ;
(ii) glucose; \mathbf{R} if two compounds are given
(iii) aerobic;
carbon dioxide / water / no lactic acid, produced ;
anaerobic $=0$ for the whole of (iii)
(c) dissolved / in solution / soluble ;
in plasma;
(d) mark name and function independently
read the functions of \boldsymbol{A} and \boldsymbol{B} together before awarding marks

part	name of part	function
A	glomerulus ; A knot of capillaries R capillaries	filtration / filtering (blood) ; A increase in (blood) pressure / ref to high pressure A 'substances forced out' R diffusion
B	capsule ; R cup	collects filtrate / allows filtration ;
C	tubule ; distal is neutal R nephron / tube	(selective) reabsorption ; reabsorbs, water / glucose / salts / minerals / ions / amino acids ; ignore nutrients A description of reabsorption, e.g. active uptake of glucose absorption back into blood
D	collecting duct ;	(re)absorbs water / passes urine to pelvis or ureter ; R urea unless with water A waste substances

2 (e) (i) award two marks if correct answer (1699 / 1699.2 / 1700) is given award one mark if no answer or incorrect answer but correct working is shown
$1.18 \times 60 \times 24 / 1.18 \times 1440$
1699 / 1699.2 / $1700\left(\mathrm{dm}^{3}\right)$;;
(ii) award two marks if

- correct answer (0.1) is given
- allow ecf from (e)(i) - so check calculation
if no answer or incorrect answer award one mark for dividing 1.7 by something and multiplied by 100
$1.7 / 1700 \times 100$
0.1 (\%) ;;

